من ذاق ظُلمة الجهل أدرك أن العلم نور |  Facebook

حفظ البيانات
الرئيسيةالتسجيلالتعليماتمواضيع لم يتم الرد عليهامشاركات اليومالبحث

منطقة دخول العضو
اسم العضو:
كلمة السر:
ادخلني بشكل آلي عند زيارتي مرة اخرى: 
:: لقد نسيت كلمة السر
بحث في الموقع
 
 

نتائج البحث
 
Rechercher بحث متقدم
جديد المواضيع
تواصل معنا


إرسال موضوع جديد   إرسال مساهمة في موضوع
 

أسئلة الرياضيات صفحة 21

استعرض الموضوع التالي استعرض الموضوع السابق اذهب الى الأسفل 
كاتب الموضوع

Hisham AbuGhazi
.: الإدارة :.
.: الإدارة :.

avatar

التسجيل التسجيل : 20/09/2012
المشاركات المشاركات : 1491
الاقامة الاقامة : غزة
المهنة المهنة : طالب جامعي




1) جتا2هـ - جا2هـ = 1- 2جا2هـ
الإجابة:
الطرف الأيمن = جتا2هـ - جا2هـ
حسب المتطابقة الأساسية جتا2هـ + جا2هـ =1 نتوصل إلى المتطابقة التالية :
جتا2هـ = 1 – جا2هـ ، ثم نقوم بتعويض هذه المعادلة في الطرف الأيمن عن قيمة جتا2هـ فتصبح المعادلة كالتالي :
1 – جا2هـ - جا2هـ = 1 – 2 جا2هـ
= الطرف الأيسر
(2) قا2هـ + قتا2هـ = قا2هـ × قتا2هـ
الإجابة:
الطرف الأيمن = قا2هـ + قتا2هـ
حسب النسب المثلثية الثانوية نتوصل للتالي قا2هـ = ، قتا2هـ =
ثم نقوم بتعويض هذه النسب في الطرف الأيمن كالتالي:
+ = =
ومن خلال المتطابقة الأساسية الأولى جتا2هـ + جا2هـ =1 نعوض عن البسط كالتالي:
= = ×
= قا2هـ × قتا2هـ
= الطرف الأيسر
(3) (جاهـ + جتاهـ)2 = 1+ 2جاهـ جتاهـ
الإجابة:
الطرف الأيمن = (جاهـ + جتاهـ)2
أولا نقوم بفك المربع الكامل كالتالي:
(جاهـ + جتاهـ)2 = جا2هـ + جتا2هـ +2جاهـ جتاهـ (1)
ومن خلال المتطابقة الأساسية الأولى جتا2هـ + جا2هـ =1 نعوض في المعادلة رقم (1)
(جاهـ + جتاهـ)2 = 1 + 2جاهـ جتاهـ
= الطرف الأيسر
(4) ظاهـ + ظتاهـ = قاهـ × قتاهـ
الإجابة:

الطرف الأيمن = ظاهـ + ظتاهـ
حسب النسب المثلثية نتوصل للتالي ظاهـ = ، ظتاهـ =
نقوم بالتعويض في الطرف الأيمن عن النسب المثلثية كالتالي:
+ = =
ومن خلال المتطابقة الأساسية الأولى جتا2هـ + جا2هـ =1 نعوض عن البسط كالتالي:
= = ×
= قاهـ × قتاهـ = الطرف الأيسر
(5) قا4س – قا2س = ظا2س + ظا4س
الإجابة:
الطرف الأيمن = قا4س – قا2س
نقوم بأخذ العامل المشترك بين الطرفين كالتالي : قا2س ( قا2س – 1 )
حسب المتطابقة الأساسية ظا2س + 1 = قا2س نتوصل إلى المتطابقة التالية :
ظا2س = قا2س -1 ، ثم نقوم بتعويض هذه المعادلة في الطرف الأيمن كالتالي:
قا2س ( قا2س – 1 ) = قا2س × ظا2س (1)
الطرف الأيسر = ظا2س + ظا4س
نقوم بأخذ العامل المشترك بين الطرفين كالتالي : ظا2س ( 1 + ظا2س )
حسب المتطابقة الأساسية ظا2س + 1 = قا2س ، نقوم بتعويض هذه المعادلة في الطرف الأيسر كالتالي:
ظا2س ( 1 + ظا2س ) = ظا2س × قا2س (2)
الطرف الأيمن = الطرف الأيسر
(6) ظتاس قاس = قتاس
الإجابة:
الطرف الأيمن = ظتاس قاس
حسب النسب المثلثية نتوصل للتالي ظتاس = ، قاس =
نقوم بالتعويض في الطرف الأيمن عن النسب المثلثية كالتالي:
ظتاس قاس = × =
= قتاس
= الطرف الأيسر
(7) = ( قتاس – ظتاس )2
الإجابة:
الطرف الأيسر= ( قتاس – ظتاس )2
أولا نقوم بفك المربع الكامل كالتالي:
( قتاس – ظتاس )2 = قتا2س + ظتا2س -2 قتاس ظتاس (1)
حسب النسب المثلثية الثانوية نتوصل للتالي قتا2س = ، ظتا2س =
ثم نقوم بتعويض هذه النسب في المعادلة رقم (1) كالتالي:
قتا2س + ظتا2س -2 قتاس ظتاس = + -2 ×
= - =
= =
حسب المتطابقة الأساسية جتا2س + جا2س =1 نتوصل إلى المتطابقة التالية :
جا2س = 1 – جتا2س ، ثم نقوم بتعويض هذه المعادلة في المقام عن قيمة جا2س فتصبح المعادلة كالتالي :
= =
ومن خلال الاختصار بين البسط والمقام نتوصل للتالي :
=
= الطرف الأيمن

(8) =
الإجابة:
الطرف الأيمن =
حسب النسب المثلثية الثانوية قاهـ = ، ثم نقوم بالتعويض في الطرف الأيمن
= جاهـ ÷ قاهـ = جاهـ ÷ = جاهـ × = جاهـ جتاهـ
الطرف الأيسر=
حسب النسب المثلثية الثانوية ظاهـ = ، ظتاهـ =
ثم نقوم بالتعويض في الطرف الأيسر كالتالي:
= 1 ÷ ظاهـ + ظتاهـ
= 1 ÷ + = 1 ÷
= 1 ÷
ومن خلال المتطابقة الأساسية الأولى جتا2هـ + جا2هـ =1 نعوض عن البسط كالتالي
1÷ = 1 ÷
ثم نحول عملية القسمة إلى عملية ضرب كالتالي :
1 ÷ = 1 × = جتاهـ جاهـ
الطرف الأيمن = الطرف الأيسر



 

 
 

أسئلة الرياضيات صفحة 21

استعرض الموضوع التالي استعرض الموضوع السابق الرجوع الى أعلى الصفحة 
  راقب الله فيما تكتب وتذكر ( مَا يَلْفِظُ مِن قَوْلٍ إِلا لَدَيْهِ رَقِيبٌ عَتِيدٌ )

 مواضيع مماثلة

-
» حل بعض أسئلة صفحة 16
» حل أسئلة صفحة 94 في الهندسة الفراغية للصف العاشر
» حل أسئلة الوحدة الثقافة التقنية للصف العاشر الفصل الثاني صفحة 101
» أسئلة موضوعية للمراجعة النهائية لمادة الرياضيات البحتة للصف الحادي عشر ( المتالييات الحسابية )
» علماء الرياضيات
Powered by phpbb® Copyright ©2012-2019 Ltd
التعليقات المنشورة لا تعبر عن رأي ادارة المنتدى ولا نتحمل أي مسؤولية قانونية حيال ذلك (ويتحمل كاتبها مسؤولية النشر)